Cycloartane Triterpenes Isolated from Combretum quadrangulare in a Screening Program for Death-Receptor Expression Enhancing Activity

Kazufumi Toume, ${ }^{+}$Takafumi Nakazawa, ${ }^{\dagger}$ Takashi Ohtsuki, ${ }^{\dagger}$ Midori A. Arai, ${ }^{\dagger}$ Takashi Koyano, ${ }^{\neq}$ Thaworn Kowithayakorn, ${ }^{\S}$ and Masami Ishibashi ${ }^{*,+}$
${ }^{\dagger}$ Graduate School of Pharmaceutical Sciences, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
${ }^{\ddagger}$ Temko Corporation, 4-27-4 Honcho, Nakano, Tokyo 164-0012, Japan
${ }^{5}$ Department of Horticulture, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand

Supporting Information

During our search for bioactive natural products we investigated the constituents of various terrestrial plants and isolated several death-receptor 5 promoter-enhancing isoflavones. ${ }^{1}$ Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), a member of the TNF superfamily, is a promising agent for anticancer therapy since it triggers apoptosis in a variety of cancer cells but not in many normal cells. ${ }^{2}$ TRAIL is known to bind to death receptors such as DR5 (death receptor $5=$ TRAIL-R2) and DR4 (death receptor $4=$ TRAIL-R1), resulting in the activation of caspase-signaling pathways leading to apoptosis. ${ }^{3}$ However, studies have shown that some cancer cells display intrinsic or acquired resistance to apoptosis induced by TRAIL, which may restrict its use in treatment. ${ }^{4,5}$ Therefore, for the clinical use of TRAIL in cancer therapy, it is extremely important to overcome TRAIL-resistance. TRAIL-resistance has been attributed to a loss of TRAIL receptors, the upregulation of TRAIL decoy receptors, the enhanced expression of cellular FLICE-like inhibitory protein (cFLIP) and cellular inhibitor of apoptosis protein (cIAP), and changes in the expression of $\mathrm{Bcl}-2$ family proteins. In many cases, overcoming TRAIL-resistance involved the up-regulation of the expression of death receptors, especially DR5. Therefore, compounds that enhance DR5 expression are considered to have potential for overcoming

TRAIL-resistance. During our search for bioactive natural products with tumor selective apoptosis inducing activity, ${ }^{6}$ we examined MeOH extracts of medicinal plants collected in Thailand in order to find compounds that enhance DR5 promoter expression. We previously reported that eight xanthone derivatives isolated from Garcinia mangostana (mangosteen), and teleocidin A-2, which was isolated from an actinomycete, enhance DR5 promoter expression. ${ }^{7}$ We suggested that these compounds overcome TRAIL-resistance by up-regulating DR5 expression. In this paper, we describe the isolation and structure elucidation of nine new cycloartane triterpenes ($\mathbf{1 - 9)}$ and eight known compounds ($\mathbf{1 0} \mathbf{- 1 7}$) from Combretum quadrangulare Kurz (Combretaceae) leaves and report the DR5-enhancing activities of these compounds.

■ RESULTS AND DISCUSSION

In our screening study for tumor-selective anticancer agents, a MeOH extract of C . quadrangulare leaves exhibited a potent effect on DR5 promoter enhancement (2.8-fold increase in

[^0]activity at $100 \mu \mathrm{~g} / \mathrm{mL})$. The extract was subjected to Diaion HP20 column chromatography (CC) to yield three fractions. One fraction eluted with $\mathrm{MeOH} /$ acetone (1:1), which had a potent effect on DR5 enhancement (1.9-fold increase in activity at $50 \mu \mathrm{~g} / \mathrm{mL}$), was partitioned into hexane, $\mathrm{EtOAc}, n-\mathrm{BuOH}$, and aqueous layers, and DR5 promoter activity was found to be particularly strong in the $n-\mathrm{BuOH}$ - and EtOAc-soluble fractions (4.8- and 1.8 -fold increase, respectively, at $50 \mu \mathrm{~g} / \mathrm{mL}$). Activityguided fractionation of the n - BuOH - and EtOAc-soluble fractions by CC yielded nine new cycloartane triterpenes $(\mathbf{1 - 9})$ and eight known compounds (10-17).

Combretanone A (1) was shown to have the molecular formula $\mathrm{C}_{30} \mathrm{H}_{50} \mathrm{O}_{5}$ on the basis of HREIMS data (m / z 490.3652, calcd for $\mathrm{C}_{30} \mathrm{H}_{50} \mathrm{O}_{5}, \mathrm{M}^{+}$), which indicated six degrees of unsaturation. The IR spectrum exhibited absorption bands at $v_{\max } 3390$ and $1700 \mathrm{~cm}^{-1}$ due to OH and carbonyl groups, respectively. The ${ }^{1} \mathrm{H}$ NMR spectrum of 1 (Table 1) showed seven methyl groups [$\delta_{\mathrm{H}} 1.31(3 \mathrm{H}, \mathrm{s}), 1.28(3 \mathrm{H}, \mathrm{s}), 1.10(3 \mathrm{H}, \mathrm{s})$, $1.05(9 \mathrm{H}, \mathrm{s})$, and $0.96(3 \mathrm{H}, \mathrm{d}, J=6.4 \mathrm{~Hz})]$, three oxymethine protons $\left[\delta_{\mathrm{H}} 3.84(1 \mathrm{H}, \mathrm{ddd}, J=10.7,6.5,1.6 \mathrm{~Hz}), 3.64(1 \mathrm{H}, \mathrm{td}, J=\right.$ $9.5,4.0 \mathrm{~Hz})$, and $3.31(1 \mathrm{H}, \mathrm{d}, J=6.5 \mathrm{~Hz})$], and characteristic methylene protons displaying high-field resonances [$\delta_{\mathrm{H}} 0.94$ and 0.56 (each $1 \mathrm{H}, \mathrm{d}, J=4.6 \mathrm{~Hz}$)]. The ${ }^{13} \mathrm{C}$ NMR spectrum of 1 showed 30 carbon signals: one carbonyl carbon ($\delta_{\mathrm{C}} 215.8$), three oxymethines ($\delta_{\mathrm{C}} 79.5,70.7$, and 70.4), one O -bearing sp^{3} quaternary carbon ($\delta_{\mathrm{C}} 73.4$), five sp^{3} quaternary carbons (δ_{C} 49.6, 48.3, 46.0, 26.5, and 20.8), four sp ${ }^{3}$ methines ($\delta_{\mathrm{C}} 54.5,52.1$, 46.6 , and 32.2), nine sp^{3} methylenes ($\delta_{\mathrm{C}} 40.2,37.2,37.0,32.8$, $32.5,31.1,28.8,27.8$, and 26.9), and seven methyl groups (δ_{C} 26.8, 25.9, 22.2, 20.7, 18.9, 18.1, and 17.4) by DEPT and HMQC analysis. A carbonyl and five rings accounted for six degrees of unsaturation. Except for its side chain, the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of 1 were similar to those of known cycloartane-type triterpenes. ${ }^{8,9}$ Detailed analysis of its ${ }^{1} \mathrm{H}^{1}{ }^{1} \mathrm{H}$ COSY and HMBC experiments established the planar structure of $\mathbf{1}$. A ketone group
at C-3 was confirmed by HMBC correlations from $\mathrm{H}-2, \mathrm{H}_{3}-28$, and $\mathrm{H}_{3}-29$ to C-3 ($\delta_{\mathrm{C}} 215.8$). ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY cross-peaks for $\mathrm{H}-5 / \mathrm{H}-6, \mathrm{H}-6 / \mathrm{H}-7$, and $\mathrm{H}-7 / \mathrm{H}-8$ and the HMBC cross-peaks from $\mathrm{H}-5, \mathrm{H}-6$, and $\mathrm{H}-8$ to $\mathrm{C}-7\left(\delta_{\mathrm{C}} 70.7\right)$ indicated the presence of an OH at $\mathrm{C}-7$. The $23-$ - 24 -, and $25-\mathrm{OH}$ substituents were confirmed by the ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ coupling between $\mathrm{H}-23\left[\delta_{\mathrm{H}} 3.84(1 \mathrm{H}\right.$, ddd, $J=10.7,6.5,1.6 \mathrm{~Hz})]$ and $\mathrm{H}-24\left[\delta_{\mathrm{H}} 3.31(1 \mathrm{H}, \mathrm{d}, J=\right.$ $6.5 \mathrm{~Hz})]$ and the HMBC correlations from $\mathrm{H}_{3}-26$ and $\mathrm{H}_{3}-27$ to C-24 ($\delta_{\mathrm{C}} 79.5$) and C-25 ($\delta_{\mathrm{C}} 73.4$) (as shown in Figure S1, Supporting Information). Thus, the planar structure of $\mathbf{1}$ was concluded to be as shown. Axial orientations of H-7 and H-8 were deduced by their large coupling constant value ($J_{\mathrm{H}-7 / \mathrm{H}-8}$ 9.5 Hz).

The HRESIMS data of combretanone B (2) exhibited a quasimolecular ion peak at $m / z 529.3491$ (calcd for $\mathrm{C}_{30} \mathrm{H}_{50} \mathrm{O}_{6} \mathrm{Na}$ $[\mathrm{M}+\mathrm{Na}]^{+}$), indicating the molecular formula $\mathrm{C}_{30} \mathrm{H}_{50} \mathrm{O}_{6}$. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 2 (Table 1) closely resembled those of $\mathbf{1}$. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 2 showed six methyl signals $\left[\delta_{\mathrm{H}} 0.99(3 \mathrm{H}, \mathrm{s}) / \delta_{\mathrm{C}} 17.9, \delta_{\mathrm{H}} 0.95(3 \mathrm{H}, \mathrm{d}, J=6.4 \mathrm{~Hz}) / \delta_{\mathrm{C}} 16.9\right.$, $\delta_{\mathrm{H}} 1.25(3 \mathrm{H}, \mathrm{s}) / \delta_{\mathrm{C}} 26.1, \delta_{\mathrm{H}} 1.27(3 \mathrm{H}, \mathrm{s}) / \delta_{\mathrm{C}} 27.3, \delta_{\mathrm{H}} 0.95$ $(3 \mathrm{H}, \mathrm{s}) / \delta_{\mathrm{C}} 19.8$, and $\left.\delta_{\mathrm{H}} 0.97(3 \mathrm{H}, \mathrm{s}) / \delta_{\mathrm{C}} 19.2\right]$ and a set of oxymethylene signals [$\delta_{\mathrm{H}} 3.85$ and 3.28 (each $1 \mathrm{H}, \mathrm{d}, J=$ $\left.11.4 \mathrm{~Hz}) / \delta_{\mathrm{C}} 64.4\right]$. The oxymethylene signal was assigned to $\mathrm{C}-28$ on the basis of the HMBC cross-peaks for $\mathrm{H}_{3}-29 / \mathrm{C}-3$, $\mathrm{H}_{3}-29 / \mathrm{C}-28, \mathrm{H}_{2}-28 / \mathrm{C}-3$, and $\mathrm{H}_{2}-28 / \mathrm{C}-5$. The remaining moiety of 2 had the same structure as in 1 on the basis of its ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY and HMBC correlation data and comparison of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ chemical shifts (Table 1). Thus, the planar structure of 2 corresponded to a 28 -hydroxy derivative of $\mathbf{1}$. Axial orientations of $\mathrm{H}-7$ and $\mathrm{H}-8$ were deduced by their large coupling constant value ($J_{\mathrm{H}-7 / \mathrm{H}-8} 11.0 \mathrm{~Hz}$). In the NOE experiment, correlations observed between $\mathrm{H}-2 \beta$ ($\delta_{\mathrm{H}} 2.67$), $\mathrm{H}_{3}-29$, and $\mathrm{H}-19 \beta\left(\delta_{\mathrm{H}} 0.95\right)$ indicated that the methyl group ($\mathrm{C}-29$) at $\mathrm{C}-4$ had a β-axial orientation and that the $\mathrm{CH}_{2} \mathrm{OH}$ group (C-28) at C-4 was α-equatorial.

To assess the relative configurations of the side chains of compounds 1 and 2, we focused on their ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ coupling constant values. Piscidinol A, ${ }^{10}$ which possesses the same sidechain moiety as 1 with a syn configuration between $\mathrm{H}-23$ and $\mathrm{H}-24$, demonstrated the following coupling constant: $\mathrm{J}_{\mathrm{H}-23 / \mathrm{H}-24}$ $\approx 0 \mathrm{~Hz}$. Meanwhile, 24-epi-piscidinol A, ${ }^{18}$ which possesses an anti configuration between $\mathrm{H}-23$ and $\mathrm{H}-24$, displayed a coupling constant of $J_{\mathrm{H}-23 / \mathrm{H}-24}=8.0 \mathrm{~Hz}$, and their structures were established by X-ray crystallographic analysis. ${ }^{10}$ Correspondingly, 23,24,25-trihydroxycycloartan-3-one ${ }^{11}$ and alisol E, ${ }^{12}$ which have syn and anti configurations between $\mathrm{H}-23$ and $\mathrm{H}-24$, showed coupling constants of $J_{\mathrm{H}-23 / \mathrm{H}-24} \approx 0$ and 6.0 Hz , respectively. Thus, the coupling constants of 1 and $2\left(J_{\mathrm{H}-23 / \mathrm{H}-24}=\right.$ 6.5 Hz and $J_{\mathrm{H}-23 / \mathrm{H}-24}=0 \mathrm{~Hz}$, respectively) indicated that their relative configurations between $\mathrm{H}-23$ and $\mathrm{H}-24$ were anti and syn, respectively.

Combretanone C (3) had the molecular formula $\mathrm{C}_{30} \mathrm{H}_{48} \mathrm{O}_{3}$ (HRESIMS). The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 3 were similar to those of $\mathbf{1}$, except for the absence of the oxymethine signals at $\mathrm{C}-23$ and $\mathrm{C}-24$ observed in 1 and the presence of alternative olefin signals [$\delta_{\mathrm{H}} 5.59(2 \mathrm{H}, \mathrm{m})$; $\delta_{\mathrm{C}} 125.3$ and $\delta_{\mathrm{C}} 139.5$] in 3 instead of the 1,2 -diol group. The double bond was located between C-23 and C-24 by the HMBC cross-peaks from $\mathrm{H}_{2}-22$ to C-23, from $\mathrm{H}_{2}-22$ to C-24, from H-23/H-24 ($\delta_{\mathrm{H}} 5.59,2 \mathrm{H}$) to C-25, C-26, and C-27, and from $\mathrm{H}_{3}-26 / \mathrm{H}_{3}-27\left(\delta_{\mathrm{H}} 1.31,6 \mathrm{H}\right)$ to $\mathrm{C}-25$ and $\mathrm{C}-24$. Axial orientations of $\mathrm{H}-7$ and $\mathrm{H}-8$ were indicated by the large coupling constant value ($J_{\mathrm{H}-7 / \mathrm{H}-8}=9.9 \mathrm{~Hz}$).

Table 1. ${ }^{1} \mathrm{H}$ NMR Spectroscopic Data for Combretanones A-G (1-7)

The geometry of the disubstituted double bond at C-23 could not be determined by the vicinal coupling constant of the olefinic signals due to overlapping. However, comparison of the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR chemical shifts of the side chain of 3 [$\delta_{\mathrm{H}-23}$ and H-24 $5.59(2 \mathrm{H}, \mathrm{m}), \delta_{\mathrm{H}-26 \text { and } \mathrm{H}-27} 1.31(6 \mathrm{H}, \mathrm{s}), \delta_{\mathrm{C}-22} 39.0, \delta_{\mathrm{C}-23} 125.3$, and $\left.\delta_{\mathrm{C}-24} 139.5\right]$ with those of both synthesized E / Z-isomers of cycloart-23-ene-3,25-diol ${ }^{13}$ [$\delta_{\mathrm{H}-23}$ and $\mathrm{H}-245.60(2 \mathrm{H}, \mathrm{m}), \delta_{\mathrm{H}-26}$ $1.31(3 \mathrm{H}, \mathrm{s}), \delta_{\mathrm{H}-27} 1.32(3 \mathrm{H}, \mathrm{s}), \delta_{\mathrm{C}-22} 39.0, \delta_{\mathrm{C}-23} 125.6$, and $\delta_{\mathrm{C}-24} 139.4$ for the E-isomer and $\delta_{\mathrm{H}-23} 5.31(1 \mathrm{H}$, ddd, $J=12.1$, $8.8,6.1), \delta_{\mathrm{H}-24} 5.53(1 \mathrm{H}, \mathrm{ddd}, J=12.1,1.7,1.7), \delta_{\mathrm{H}-26} 1.33(3 \mathrm{H}, \mathrm{s})$, $\delta_{\mathrm{H}-27} 1.33(3 \mathrm{H}, \mathrm{s}), \delta_{\mathrm{C}-22} 34.6, \delta_{\mathrm{C}-23} 130.2$, and $\delta_{\mathrm{C}-24} 137.4$ for the Z-isomer] allowed assignment of E-geometry to the $\Delta^{23,24}$ double bond of 3 .

The molecular formula of combretanone D (4) was revealed to be $\mathrm{C}_{30} \mathrm{H}_{48} \mathrm{O}_{3}$, the same as that of 3 . The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 4 were similar to those of 3 , except for one less sp^{2} methine [$\delta_{\mathrm{H}} 5.19(1 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}) / \delta_{\mathrm{C}} 128.9$], one more sp^{2} quaternary carbon ($\delta_{\mathrm{C}} 133.8$) signal in 4 than in 3 , and an oxymethine signal [$\delta_{\mathrm{H}} 4.48(1 \mathrm{H}, \mathrm{td}, J=8.7,2.7 \mathrm{~Hz}) / \delta_{\mathrm{C}} 65.9$] in 4 instead of the O-bearing sp^{3} quaternary carbon seen in 3. HMBC cross-peaks of $\mathrm{H}-23 / \mathrm{C}-20, \mathrm{H}-23 / \mathrm{C}-24, \mathrm{H}-23 / \mathrm{C}-25$,
$\mathrm{H}-24 / \mathrm{C}-26, \mathrm{H}-24 / \mathrm{C}-27, \mathrm{H}_{3}-26 / \mathrm{C}-24$, and $\mathrm{H}_{3}-27 / \mathrm{C}-24$ indicated that the oxymethine and a trisubstituted double bond were located at C-23 and C-24/C-25, respectively. Thus, the structure of compound 4 was revealed to be as shown. Axial orientations of $\mathrm{H}-7$ and $\mathrm{H}-8$ were deduced from the coupling constant $\left(\mathrm{J}_{\mathrm{H}-7 / \mathrm{H}-8}\right.$ 9.8 Hz). The relative configuration of C-23 was deduced to be $23 \alpha-\mathrm{OH}$ by comparison of the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data with two epimers of related compounds possessing the same side chain. The ${ }^{13} \mathrm{C}$ NMR chemical shift values of the C-23, C-24, and C-25 positions of $4\left(\delta_{\mathrm{C}-23} 65.9, \delta_{\mathrm{C}-24} 128.9\right.$, and $\left.\delta_{\mathrm{C}-25} 133.8\right)$ more closely resembled those of 23α-cycloarta-24-ene-3 $\beta, 23$-diol $\left(\delta_{\mathrm{C}-23} 66.1, \delta_{\mathrm{C}-24} 129.1 \text {, and } \delta_{\mathrm{C}-25} 133.8\right)^{14}$ than those of 23β -cycloarta-24-ene-3 $\beta, 23$-diol $\left(\delta_{\mathrm{C}-23} 67.3, \delta_{\mathrm{C}-24} 128.4\right.$, and $\delta_{\mathrm{C}-25}$ 135.6). ${ }^{14}$

Combretanone E (5) and combretanone F (6) had the same molecular formula $\left(\mathrm{C}_{31} \mathrm{H}_{50} \mathrm{O}_{3}\right)$, one more carbon atom and two more hydrogen atoms than 4 . The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 5 and $\mathbf{6}$ were again similar to those of other cycloartanes. However, the ${ }^{13} \mathrm{C}$ NMR spectra of 5 and 6 showed 31 carbon signals. In the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 5 , the signals of one sp ${ }^{2}$ methylene [$\delta_{\mathrm{H}} 4.82(1 \mathrm{H}, \mathrm{br}$ s $)$ and $\delta_{\mathrm{H}} 4.96(1 \mathrm{H}, \mathrm{br}$ s $\left.) / \delta_{\mathrm{C}} 109.6\right]$, one sp ${ }^{3}$

O-bearing quaternary carbon $\left[\delta_{\mathrm{C}} 75.5\right]$, and an sp^{2} quaternary carbon [$\delta_{\mathrm{C}} 150.3$] were observed. Detailed analysis of the HMBC cross-peaks of H_{2}-26/C-27, H_{2}-26/C-24, $\mathrm{H}_{3}-27 / \mathrm{C}-24$, $\mathrm{H}_{3}-27 / \mathrm{C}-25, \mathrm{H}_{3}-27 / \mathrm{C}-26, \mathrm{H}_{3}-31 / \mathrm{C}-23, \mathrm{H}_{3}-31 / \mathrm{C}-24, \mathrm{H}_{3}-31 /$ $\mathrm{C}-25, \mathrm{H}_{2}-23 / \mathrm{C}-24$, and $\mathrm{H}_{2}-23 / \mathrm{C}-25$ indicated that a tertiary OH and a tertiary CH_{3} group were located at C-24 and the double bond between C-25 and C-26. In the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of 6, an sp^{2} methylene signal $\left[\delta_{\mathrm{H}} 4.75\left(1 \mathrm{H}, \mathrm{br}\right.\right.$ s) and $\delta_{\mathrm{H}} 4.81(1 \mathrm{H}$, $\left.\mathrm{brs}) / \delta_{\mathrm{C}} 111.4\right]$ and an sp^{2} quaternary carbon $\left(\delta_{\mathrm{C}} 148.1\right)$ were observed, similar to 5 ; however, signals for oxymethine $\left[\delta_{\mathrm{H}} 3.65\right.$ $(1 \mathrm{H}, \mathrm{m}) / \delta_{\mathrm{C}} 69.9$] and sp^{3} methine [$\delta_{\mathrm{H}} 2.09(1 \mathrm{H}$, quint., $J=$ $6.7 \mathrm{~Hz}) / \delta_{\mathrm{C}} 47.9$] were detected instead of the sp^{3} O-bearing quaternary carbon observed in 5 . HMBC cross-peaks of $\mathrm{H}_{2}-26 /$ $\mathrm{C}-24, \mathrm{H}_{2}-26 / \mathrm{C}-25, \mathrm{H}_{2}-26 / \mathrm{C}-27, \mathrm{H}_{3}-27 / \mathrm{C}-24, \mathrm{H}_{3}-27 / \mathrm{C}-25$, $\mathrm{H}_{3}-27 / \mathrm{C}-26, \mathrm{H}_{2}-23 / \mathrm{C}-25$, and $\mathrm{H}_{2}-23 / \mathrm{C}-31$ indicated a secondary OH at C-23 and a secondary methyl group at C-24. Thus, the structures of 5 and $\mathbf{6}$ were elucidated to be as shown. Their large coupling constant values confirmed axial orientations of H-7 and $\mathrm{H}-8$.

Combretanone G (7) also had the molecular formula $\mathrm{C}_{31} \mathrm{H}_{50} \mathrm{O}_{3}$. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 7 closely resembled those of 3; however, one additional OCH_{3} signal $\left[\delta_{\mathrm{H}} 3.15 / \delta_{\mathrm{C}}\right.$ 50.2] was observed. The OCH_{3} group was determined to be at $\mathrm{C}-25$ by the HMBC correlations of $\mathrm{H}_{3} \mathrm{CO} / \mathrm{C}-25, \mathrm{H}_{3}-26 / \mathrm{C}-25$, and $\mathrm{H}_{3}-27 / \mathrm{C}-25$. Thus, the planar structure of 7 was concluded to be as shown.

The CD spectra of $1-7$ all showed a negative Cotton effect at 295 nm , as does cycloartan-3-one-16,23,24,25-tetrol, ${ }^{9}$ indicating that $\mathbf{1}-7$ and cycloartan-3-one-16,23,24,25-tetrol $\left([\theta]_{295}-3000\right)^{9}$ have the same cycloartane skeleton.

Combretic acid A (8) was obtained as colorless needle crystals (mp $190{ }^{\circ} \mathrm{C}$ from MeOH), and its molecular formula was determined to be $\mathrm{C}_{32} \mathrm{H}_{50} \mathrm{O}_{6}$, indicating that it possessed two more carbons, two more hydrogens, and three more oxygens than 3 . The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of 8 closely resembled those of 3, especially in its side chain; however, the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 8 showed signals for two carbonyls [$\delta_{\mathrm{C}} 172.1$ and 180.2] and two oxymethines [$\delta_{\mathrm{H}} 4.02(1 \mathrm{H}, \mathrm{dd}, J=11.6,4.3 \mathrm{~Hz}) /$ $\delta_{\mathrm{C}} 75.9$ and $\left.\delta_{\mathrm{H}} 4.78(1 \mathrm{H}, \mathrm{m}) / \delta_{\mathrm{C}} 73.7\right]$. Comparison of the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of 8 and 3 and detailed analysis of the COSY cross-peaks of $\mathrm{H}_{2}-6 / \mathrm{H}-7 / \mathrm{H}-8$ and the HMBC cross-peaks of $\mathrm{H}_{3}-29 / \mathrm{C}-3$ and $\mathrm{H}_{3}-29 / \mathrm{C}-28$ revealed an OAc group at C-7, an OH at C-3, and a carboxylic acid at C-28. The relative configuration of 8 was suggested by ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ coupling constants and NOE experiments. The large vicinal coupling constant for $\mathrm{H}-2 \beta$ and $\mathrm{H}-3$ $\left(J_{\mathrm{H}-2 \alpha / \mathrm{H}-3}=11.6 \mathrm{~Hz}\right)$ indicated that they were oriented in a transdiaxial manner. The axial orientations of $\mathrm{H}-7$ and $\mathrm{H}-8$ were deduced by their large coupling constant value ($J_{\mathrm{H}-7 / \mathrm{H}-8} 8.3 \mathrm{~Hz}$). In the NOE experiment, correlations observed between $\mathrm{H}-2 \beta$, $\mathrm{H}_{3}-29$, and $\mathrm{H}-19 \beta$ indicated that the methyl group (C-29) at C-4 was β-oriented and revealed the α-equatorial orientation of the carboxyl group (C-28) at C-4.

Combretic acid $\mathrm{B}(9)$ was obtained as colorless needle crystals (mp $190{ }^{\circ} \mathrm{C}$ from MeOH), and the molecular formula was $\mathrm{C}_{32} \mathrm{H}_{50} \mathrm{O}_{6}$ from its HRESIMS data, the same as that of 8 . The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 9 closely resembled those of 3 , especially in its cycloartane moiety; however, signals due to an exo-olefin group [$\delta_{\mathrm{H}} 4.97\left(1 \mathrm{H}, \mathrm{br}\right.$ s) and $5.22(1 \mathrm{H}, \mathrm{br}$ s $) / \delta_{\mathrm{C}}$ 110.4] and an additional oxymethine [$\delta_{\mathrm{H}} 4.35(1 \mathrm{H}, \mathrm{t}, J=$ $6.4 \mathrm{~Hz}) / \delta_{\mathrm{C}} 76.2$] were also observed. The HMBC cross-peaks of $\mathrm{H}_{2}-26 / \mathrm{C}-24, \mathrm{H}_{2}-26 / \mathrm{C}-25, \mathrm{H}_{3}-27 / \mathrm{C}-24, \mathrm{H}_{3}-27 / \mathrm{C}-25, \mathrm{H}_{3}-27 /$ $\mathrm{C}-26, \mathrm{H}_{2}-22 / \mathrm{C}-24$, and H_{2}-23/C-24 indicated that an OH group

Figure 1. Activation of the DR5 promoter by compounds 1-17, luteolin (positive control: lut), and DMSO (negative control: con) in DLD-1/SacI cells. The samples were tested at concentrations of 17.5 and 35 to $70 \mu \mathrm{M}$ for compounds $(\mathbf{1} \mathbf{- 1 7})$ and $17.5 \mu \mathrm{M}$ for luteolin. Each value represents the mean $\pm \operatorname{SE}(n=3)$, with significance determined with the Student's t-test (${ }^{*} p<0.05,{ }^{* *} p<0.01$ vs control).

Figure 2. Effects of compound 16, luteolin (positive control: lut), and DMSO (negative control: con) in the presence or absence of TRAIL on the viability of AGS cells. The cells were seeded in a 96 -well culture plate $\left(6 \times 10^{3}\right.$ cells per well) for 24 h and then treated with the indicated concentrations of the compounds and TRAIL ($100 \mathrm{ng} / \mathrm{mL}$) for 24 h . Cell viability was determined by the fluorometric microculture cytotoxicity assay (FMCA). Bars represent the mean $\pm \operatorname{SE}(n=3)$.
was located at C-24 and that the exo-olefin group was located at C-25. This was supported by comparison of the ${ }^{13} \mathrm{C}$ NMR data of 9 with that of 24 -epiquadrangularic acid $\mathrm{M},{ }^{15}$ which has the same side-chain moiety. The relative configuration of 9 was indicated by ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ coupling constants and NOE experiments. Axial orientations of $\mathrm{H}-7$ and $\mathrm{H}-8$ were indicated by the large coupling constant $\left(J_{\mathrm{H}-7 / \mathrm{H}-8} 8.5 \mathrm{~Hz}\right)$. NOE correlations observed between $\mathrm{H}-2 \beta, \mathrm{H}_{3}-29$, and $\mathrm{H}-19 \beta$ indicated a β-axial orientation of the methyl group (C-29) at C-4 and α-equatorial orientation of the carboxyl group (C-28) at C-4. The configuration at C-24 was determined to be 24α by comparison of the ${ }^{13} \mathrm{C}$ NMR chemical shift values of $9\left(\delta_{\mathrm{C}-24} 76.2, \delta_{\mathrm{C}-25} 149.6, \delta_{\mathrm{C}-26} 110.4\right.$, and $\delta_{\mathrm{C}-27}$ 17.9), 24-epiquadrangularic acid $\mathrm{M}\left(\delta_{\mathrm{C}-24} 76.1, \delta_{\mathrm{C}-25} 149.6\right.$, $\delta_{\mathrm{C}-26} 110.4$, and $\left.\delta_{\mathrm{C}-27} 17.7\right)$, which has a 24α-configuration, and quadrangularic acid $\mathrm{M}\left(\delta_{\mathrm{C}-24} 75.6, \delta_{\mathrm{C}-25} 149.6, \delta_{\mathrm{C}-26} 110.0\right.$, and $\delta_{\mathrm{C}-27} 18.2$), which displays a 24β-configuration.

Compounds $10-17$ were revealed to be arjunolic acid ${ }^{16}$ (10), asiatic acid ${ }^{17}$ (11), 5,7,3', 5^{\prime}-tetrahydroxy-3, 4^{\prime}-dimethyoxyflavone ${ }^{18}$ (12), combretol ${ }^{19}$ (13), $3^{\prime}, 5$-dihydroxy- $3,4,{ }^{\prime} 5^{\prime}, 7$-tetramethoxyflavone ${ }^{20}$ (14), pachypodol ($5,4^{\prime}$-dihydroxy-3,7, 3^{\prime}-trimethoxyflavone $)^{21}$ (15), quercetin $3,4^{\prime}$-dimethyl ether ($5,7,3^{\prime}$-trihydroxy-$3,4^{\prime}$-dimethoxyflavone $)^{22}$ (16), and myricetin $3,3^{\prime}, 4^{\prime}$-trimethyl ether ${ }^{23}$ (17) by comparison of their NMR and MS data with those in the literature.

Table 2. ${ }^{13}$ C NMR Spectroscopic Data for Combretanones A-G (1-7)

Compounds $\mathbf{1 - 1 7}$ were evaluated for DR5 promoter activity using a luciferase assay in DLD-1/SacI cells, and luteolin, ${ }^{24,25}$ which had been reported to increase DR5 expression, was used as a positive control at $17.5 \mu \mathrm{M}$. As shown in Figure 1, compounds $7,9,12,16$, and 17 increased DR5 promoter activity by $2.5-, 1.7$-, $2.0-, 6.7$-, and 2.2 -fold, respectively, as compared with the control cells at the indicated concentrations, and the flavonol 16 produced the most potent enhancement of DR5 expression. Although it is known that some natural products and small synthetic molecules induce enhanced DR5 expression, this is the first report in which cycloartane triterpenes produced enhanced DR5 expression.

In the TRAIL signaling pathway, DR5 enhancement induces TRAIL-mediated apoptosis in TRAIL-resistant cell lines. Therefore, we next investigated the TRAIL-resistance abrogating activity of the flavonol quercetin $3,4^{\prime}$-dimethyl ether ($5,7,3^{\prime}$ -trihydroxy-3, 4^{\prime}-dimethoxyflavone) (16), which possessed the most potent activity, in TRAIL-resistant human gastric adenocarcinoma (AGS) cell lines by comparing cell viability in the presence and absence of TRAIL ($100 \mathrm{ng} / \mathrm{mL}$) using the FMCA method. ${ }^{26}$ As shown in Figure 2, treatment with $100 \mathrm{ng} / \mathrm{mL}$ of

TRAIL for 24 h resulted in a slight decrease in cell viability (92%), while luteolin ${ }^{23}$ at $17.5 \mu \mathrm{M}$, which was used as a positive control, produced about 51% stronger inhibition when administered in combination with TRAIL than TRAIL alone. Treating the cells with $\mathbf{1 6}$ alone produced some toxicity, and treating the cells with 12.5 and $17.5 \mu \mathrm{M}$ of 16 in combination with TRAIL ($100 \mathrm{ng} / \mathrm{mL}$) produced 27% and 24% more inhibition than treatment with 16 alone, implying that 16 significantly overcame TRAIL-resistance. These results suggested that 16 produced its TRAIL-resistance abrogating activity by activating the TRAIL pathway via the enhancement of DR5 expression.

■ EXPERIMENTAL SECTION

General Experimental Procedures. Optical rotations were measured with a JASCO P-1020 polarimeter. Melting points were determined with a Yanako MP-500P micro melting point apparatus and are uncorrected. IR spectra were measured using the ATR method in a JASCO FT-IR 230 spectrophotometer. UV spectra were assessed in a Shimadzu UV mini-1240 spectrometer. CD spectra were measured in a JASCO J-720WI spectropolarimeter. NMR spectra were recorded on

JEOL JNM-A500 and JEOL JNM-ECP600 spectrometers with a deuterated solvent, the chemical shift of which was used as an internal standard. High-resolution electron impact mass spectra (EIMS) were measured on a JEOL GC mate, and high-resolution electrospray ionization mass spectra (ESIMS) were obtained on a Thermo Scientific Exactive spectrometer.

Plant Material. The leaves of C. quadrangulare were collected in Khon Kaen, Thailand, in August 2006, and identified by T. Kowithayakorn. A voucher specimen (7-129) has been deposited in our laboratory.

Extraction and Isolation. The leaves of C. quadrangulare (300 g) were extracted with $\mathrm{MeOH}(5 \mathrm{~L})$ at room temperature to give 77.8 g of crude extract after evaporation of the MeOH . The extract was subjected to a Diaion HP-20 CC ($8 \times 30 \mathrm{~cm}$; particle size $250-850 \mu \mathrm{~m}$) eluted with MeOH and acetone. The fraction (19.3 g) eluted with an equal mixture of MeOH and acetone was then suspended in 10% aqueous $\mathrm{MeOH}(100 \mathrm{~mL})$ and partitioned into hexane-, EtOAc-, and BuOHsoluble fractions ($300 \mathrm{~mL} \times 3$). The BuOH -soluble fraction $(2.7 \mathrm{~g})$ was subjected to silica gel (PSQ100B) CC $(5 \times 23 \mathrm{~cm})$ eluted with a $\mathrm{CHCl}_{3} / \mathrm{MeOH}$ solvent system to give nine fractions (2 A to 2 I). Fraction $2 \mathrm{E}(206 \mathrm{mg})$, which was eluted with $\mathrm{CHCl}_{3} / \mathrm{MeOH}(95: 5)$, was purified by preparative HPLC [YMC Pro C18, $1.0 \times 25 \mathrm{~cm}$; $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ ($75: 15$); flow rate: $2.5 \mathrm{~mL} / \mathrm{min}$; RI and UV detection at 254 nm] to give compounds $\mathbf{1}\left(4.7 \mathrm{mg}, t_{\mathrm{R}} 18 \mathrm{~min}\right), \mathbf{2}\left(4.1 \mathrm{mg}, t_{\mathrm{R}} 16 \mathrm{~min}\right), \mathbf{1 0}(7.4 \mathrm{mg}$, $\left.t_{\mathrm{R}} 31 \mathrm{~min}\right), \mathbf{1 1}\left(7.3 \mathrm{mg}, t_{\mathrm{R}} 32 \mathrm{~min}\right)$, and $\mathbf{1 2}\left(1.3 \mathrm{mg}, t_{\mathrm{R}} 8 \mathrm{~min}\right)$. Fraction 2D (99 mg), eluted with $\mathrm{CHCl}_{3} / \mathrm{MeOH}$ (95:5), was subjected to ODS $\mathrm{CC}(3 \times 25 \mathrm{~cm})$ eluted with a $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ solvent system, followed by preparative HPLC [YMC ODS-AM, $1.0 \times 25 \mathrm{~cm} ; \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ ($85: 15$); flow rate: $2.5 \mathrm{~mL} / \mathrm{min}$; RI and UV detection at 254 nm] to give compound $8\left(14.0 \mathrm{mg}, t_{\mathrm{R}} 43 \mathrm{~min}\right)$ and a crude fraction $(27.9 \mathrm{mg}$, $t_{\mathrm{R}} 40 \mathrm{~min}$), which was further separated by preparative HPLC [YMC ODS-AM, $1.0 \times 25 \mathrm{~cm}$; $\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}$ ($55: 45$); flow rate: $2.5 \mathrm{~mL} / \mathrm{min}$; RI and UV detection at 254 nm] to give compound $9\left(3.7 \mathrm{mg}, t_{\mathrm{R}} 42 \mathrm{~min}\right)$. Fractions 2B and 2C $(764 \mathrm{mg})$ eluted with $\mathrm{CHCl}_{3} / \mathrm{MeOH}$ (95:5) were subjected to silica gel (PSQ100B) CC $(5 \times 23 \mathrm{~cm})$ eluted with a $\mathrm{CHCl}_{3} / \mathrm{MeOH}$ solvent system, followed by preparative HPLC [YMC ODS-AM, $1.0 \times 25 \mathrm{~cm}$; $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ (75:25); flow rate: $2.5 \mathrm{~mL} / \mathrm{min}$; RI and UV detection at 254 nm] to give compounds $13\left(6.4 \mathrm{mg}, t_{\mathrm{R}}\right.$ $14 \mathrm{~min}), 3\left(53.4 \mathrm{mg}, t_{\mathrm{R}} 20 \mathrm{~min}\right), 4\left(56.7 \mathrm{mg}, t_{\mathrm{R}} 22 \mathrm{~min}\right), 5\left(23.9 \mathrm{mg}, t_{\mathrm{R}}\right.$ $25 \mathrm{~min}), 6\left(20.7 \mathrm{mg}, t_{\mathrm{R}} 28 \mathrm{~min}\right)$, and $7\left(7.5 \mathrm{mg}, t_{\mathrm{R}} 38 \mathrm{~min}\right)$ and a crude fraction ($90.2 \mathrm{mg}, t_{\mathrm{R}} 11 \mathrm{~min}$), which was further purified by preparative HPLC [Inertsil Diol, $0.6 \times 25 \mathrm{~cm}$; hexane $/ i$ - PrOH ($85: 15$); flow rate: $1.3 \mathrm{~mL} / \mathrm{min}$; RI and UV detection at 254 nm] to give compounds $\mathbf{1 4}$ $\left(2.6 \mathrm{mg}, t_{\mathrm{R}} 31 \mathrm{~min}\right)$ and $15\left(6.0 \mathrm{mg}, t_{\mathrm{R}} 36 \mathrm{~min}\right)$. The EtOAc-soluble fraction $(12.8 \mathrm{~g})$ was subjected to silica gel CC $(8 \times 23 \mathrm{~cm})$ eluted with a $\mathrm{CHCl}_{3} / \mathrm{MeOH}$ solvent system to give five fractions (3A to 3E). Fraction 3B eluted with $\mathrm{CHCl}_{3} / \mathrm{MeOH}$ (95:5) was subjected to silica gel (PSQ100B) CC $(5 \times 20 \mathrm{~cm})$ eluted with a $\mathrm{CHCl}_{3} / \mathrm{MeOH}$ solvent system, then purified by ODS CC $(4 \times 17 \mathrm{~cm})$ eluted with a $\mathrm{MeOH} /$ $\mathrm{H}_{2} \mathrm{O}$ solvent system and preparative HPLC [YMC ODS-AM, 1.0×25 cm ; $\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}$ (35:65); flow rate: $2.5 \mathrm{~mL} / \mathrm{min}$; RI and UV detection at 254 nm$]$ to give compounds $\mathbf{1 6}\left(2.8 \mathrm{mg}, t_{\mathrm{R}} 38 \mathrm{~min}\right)$ and $\mathbf{1 7}\left(7.0 \mathrm{mg}, t_{\mathrm{R}}\right.$ 44 min).

Combretanone A (1):: colorless, amorphous solid; $[\alpha]_{D}^{24}+37.0$ (c $1.0, \mathrm{CHCl}_{3}$); IR (ATR) $\nu_{\text {max }} 3390,2970$, and $1700 \mathrm{~cm}^{-1} ; \mathrm{CD}(\mathrm{MeOH})$ $\lambda_{\text {ext }}([\theta]) 295 \mathrm{~nm}(-800) ;{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ data, see Tables 1 and 2; HREIMS $m / z 490.3652\left(\mathrm{M}^{+}\right)$, calcd for $\mathrm{C}_{30} \mathrm{H}_{50} \mathrm{O}_{5}, 490.3658$.

Combretanone B(2):: colorless, amorphous solid; $[\alpha]_{\mathrm{D}}^{25}+13.9$ (c $1.0, \mathrm{CHCl}_{3}$); IR (ATR) $v_{\text {max }} 3410,2940$, and $1700 \mathrm{~cm}^{-1} ; \mathrm{CD}(\mathrm{MeOH})$ $\lambda_{\text {ext }}([\theta]) 295 \mathrm{~nm}(-1500) ;{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ data, see Tables 1 and 2; HRESIMS $\mathrm{m} / \mathrm{z} 529.3491[\mathrm{M}+\mathrm{Na}]^{+}$, calcd. for $\mathrm{C}_{30} \mathrm{H}_{50} \mathrm{O}_{6} \mathrm{Na}$, 529.3505.

Combretanone $C(3)$: colorless, amorphous solid; $[\alpha]_{\mathrm{D}}^{25}+14.6$ (c 1.0, CHCl_{3}); IR (ATR) $\nu_{\text {max }} 3410,2970$, and $1700 \mathrm{~cm}^{-1} ; \mathrm{CD}(\mathrm{MeOH})$

Table 3. NMR Spectroscopic Data for Combretic Acids A (8) and B (9)

position	8		9	
	$\delta_{\mathrm{C}}{ }^{a},$ mult.	$\begin{gathered} \delta_{\mathrm{H}}{ }^{a} \\ (J \text { in } \mathrm{Hz}) \end{gathered}$	$\delta_{\mathrm{C}}{ }^{b}$ mult.	$\begin{gathered} \delta_{\mathrm{H}}^{b} \\ (J \text { in } \mathrm{Hz}) \end{gathered}$
1	31.8, CH_{2}	$1.55 \mathrm{~m}, 1.85 \mathrm{~m}$	33.0, CH_{2}	$\begin{aligned} & 1.50 \mathrm{~m}, \\ & 1.83 \mathrm{~m} \end{aligned}$
2	29.7, CH_{2}	1.63, 1.90 m	29.6, CH_{2}	$\begin{aligned} & 1.98 \mathrm{~m}, \\ & 2.12 \mathrm{~m} \end{aligned}$
3	75.9, CH	$\begin{aligned} & 4.02 \mathrm{dd} \\ & \quad(11.6,4,3) \end{aligned}$	75.3, CH	4.66 m
4	55.1, qC		55.0, qC	
5	42.8, CH	2.19 m	42.3, CH	2.79 m
6	$30.1, \mathrm{CH}_{2}$	$1.15 \mathrm{~m}, 1.40 \mathrm{~m}$	$30.5, \mathrm{CH}_{2}$	$\begin{aligned} & 1.40 \mathrm{~m}, \\ & 2.10 \mathrm{~m} \end{aligned}$
7	73.7, CH	4.78 m	73.0, CH	5.14 m
8	51.3, CH	2.00 d (8.3)	50.9, CH	2.11 d (8.5)
9	21.0, qC		20.1, qC	
10	26.8, qC		26.5, qC	
11	27.9, CH_{2}	$1.75-1.85 \mathrm{~m}$	27.2, CH_{2}	1.80, 1.90 m
12	$33.6, \mathrm{CH}_{2}$	1.60 m	32.9, CH_{2}	1.60 m
13	46.7, qC		46.1, qC	
14	49.5, qC		48.8, qC	
15	$36.8, \mathrm{CH}_{2}$	$1.20 \mathrm{~m}, 1.55 \mathrm{~m}$	$36.3, \mathrm{CH}_{2}$	$\begin{aligned} & 1.33 \mathrm{~m}, \\ & 1.73 \mathrm{~m} \end{aligned}$
16	29.0, CH_{2}	$1.40-1.60 \mathrm{~m}$	28.6, CH_{2}	$1.40-1.90 \mathrm{~m}$
17	52.3, CH	1.58 m	52.0, CH	1.58 m
18	17.3, CH_{3}	1.01 s	17.3, CH_{3}	1.05 s
19	27.6, CH_{2}	0.37 d (4.9)	27.6, CH_{2}	0.40 d (4.6)
		0.83 d (4.9)		0.96 d (4.6)
20	37.7, CH	1.50 m	36.5, CH	1.50 m
21	19.0, CH_{3}	0.89 d (6.4)	19.0, CH_{3}	1.01 d (6.4)
22	$40.2, \mathrm{CH}_{2}$	1.78 m, 2.16 m	32.9, CH_{2}	1.25 m
23	125.9, CH	5.56 m	$31.5, \mathrm{CH}_{2}$	1.77, 1.90 m
24	140.8, CH	5.56 d (14.9)	76.2, CH	4.35 t (6.4)
25	71.2, qC		149.6, qC	
26	$30.1, \mathrm{CH}_{3}$	1.25 s	110.4, CH_{2}	$\begin{aligned} & 4.97 \mathrm{br} \mathrm{~s} \\ & 5.22 \mathrm{br} \mathrm{~s} \end{aligned}$
27	30.0, CH_{3}	1.25 s	17.9, CH_{3}	1.94 s
28	172.1, qC		179.9, qC	
29	19.5, CH_{3}	0.90 s	19.4, CH_{3}	0.98 s
30	$9.6, \mathrm{CH}_{3}$	1.08 s	10.3, CH_{3}	1.65 s
(CO)	180.2, qC		170.0, qC	
$\left(\mathrm{CH}_{3}\right)$	21.6, CH_{3}	1.95 s	$21.6, \mathrm{CH}_{3}$	1.96 s
${ }^{a}$ In $\mathrm{CD}_{3} \mathrm{OD} .{ }^{b}$ In $\mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$.				

$\lambda_{\text {ext }}([\theta]) 295 \mathrm{~nm}(-1800) ;{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ data, see Tables 1 and 2; HRESIMS $m / z 479.3496[\mathrm{M}+\mathrm{Na}]^{+}$, calcd for $\mathrm{C}_{30} \mathrm{H}_{48} \mathrm{O}_{3} \mathrm{Na}$, 479.3501.

Combretanone D (4):: colorless, amorphous solid; $[\alpha]_{D}^{25}+25.6$ (c $1.0, \mathrm{CHCl}_{3}$); IR (ATR) $v_{\max } 3470,2970$, and $1700 \mathrm{~cm}^{-1} ; \mathrm{CD}(\mathrm{MeOH})$ $\lambda_{\text {ext }}([\theta]) 295 \mathrm{~nm}(-1300) ;{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ data, see Tables 1 and 2; HRESIMS $m / z 479.3481[\mathrm{M}+\mathrm{Na}]^{+}$, calcd for $\mathrm{C}_{30} \mathrm{H}_{48} \mathrm{O}_{3} \mathrm{Na}$, 479.3501. Combretanone $E(5)$:: colorless, amorphous solid; $[\alpha]_{D}^{25}+17.3$ (c 1.0, CHCl_{3}); IR (ATR) $v_{\text {max }} 3550,2970$, and $1700 \mathrm{~cm}^{-1} ; \mathrm{CD}(\mathrm{MeOH})$ $\lambda_{\text {ext }}([\theta]) 295 \mathrm{~nm}(-1400) ;{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ data, see Tables 1 and 2; HRESIMS $m / z 493.3639[\mathrm{M}+\mathrm{Na}]^{+}$, calcd for $\mathrm{C}_{31} \mathrm{H}_{50} \mathrm{O}_{3} \mathrm{Na}$, 493.3658.

Combretanone $F(6)$: colorless, amorphous solid; $[\alpha]_{D}^{25}+26.4$ (c 1.0, CHCl_{3}); IR (ATR) $\nu_{\text {max }} 3570,2970$, and $1700 \mathrm{~cm}^{-1} ; \mathrm{CD}$ $(\mathrm{MeOH}) \lambda_{\text {ext }}([\theta]) 295 \mathrm{~nm}(-1300) ;{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ data, see Tables 1 and 2; HRESIMS $m / z 493.3641[\mathrm{M}+\mathrm{Na}]^{+}$, calcd for $\mathrm{C}_{31} \mathrm{H}_{50} \mathrm{O}_{3} \mathrm{Na}$, 493.3658.

Combretanone $G(7)$:: colorless, amorphous solid; $[\alpha]_{\mathrm{D}}^{25}+26.4$ (c 1.0, CHCl_{3}); IR (ATR) $\nu_{\text {max }} 3460,2970$, and $1710 \mathrm{~cm}^{-1}$; CD $(\mathrm{MeOH}) \lambda_{\text {ext }}([\theta]) 295 \mathrm{~nm}(-1100) ;{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ data, see Tables 1 and 2; HRESIMS $m / z 493.3638[\mathrm{M}+\mathrm{Na}]^{+}$, calcd for $\mathrm{C}_{31} \mathrm{H}_{50} \mathrm{O}_{3} \mathrm{Na}$, 493.3658.

Combretic acid $\mathrm{A}(\boldsymbol{8})$:: colorless needles; $\mathrm{mp} 190^{\circ} \mathrm{C}($ from MeOH$)$; $[\alpha]_{\mathrm{D}}^{20}+83.6(c 1.0, \mathrm{MeOH})$; IR (ATR) $v_{\text {max }} 3450,2970$, and 1720 cm^{-1}; ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ data, see Table 3; HRESIMS $m / z 553.3504[\mathrm{M}+$ $\mathrm{Na}]^{+}$, calcd for $\mathrm{C}_{32} \mathrm{H}_{50} \mathrm{O}_{6} \mathrm{Na}, 553.3505$.
Combretic acid $B(9):$ colorless needles; $\mathrm{mp} 190^{\circ} \mathrm{C}($ from MeOH$)$; $[\alpha]_{\mathrm{D}}^{20}+56.9(c 1.0, \mathrm{MeOH})$; IR (ATR) $v_{\max } 3420$, 2950, and 1720 cm^{-1}; ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ data, see Table 3; HRESIMS $m / z 553.3500[\mathrm{M}+$ $\mathrm{Na}]^{+}$, calcd for $\mathrm{C}_{32} \mathrm{H}_{50} \mathrm{O}_{6} \mathrm{Na}, 553.3505$.

Cell Cultures. DLD-1/SacI cells were kindly provided by Prof. Toshiyuki Sakai (Kyoto Prefectural University of Medicine). AGS cells were obtained from the Institute of Development, Aging and Cancer, Tohoku University. Both cell lines were cultured in RPMI-1640 medium (Wako) with 10% FBS. All cultures were maintained in a humidified incubator at $37^{\circ} \mathrm{C}$ in $5 \% \mathrm{CO}_{2} / 95 \%$ air.

DR5 Promoter Activity Assay. The assay procedure was as described previously. ${ }^{27}$ Briefly, DLD-1/SacI cells (2×10^{5} cells per well), a human colon cancer cell line that had been stably transfected with the DR5 promoter-luciferase reporter plasmid $\mathrm{pDR} / / \mathrm{Sacl},{ }^{28}$ were treated with different concentrations of each compound for 24 h at $37^{\circ} \mathrm{C}$. After the medium containing the compound had been removed, the cells were lysed in Cell Culture Lysis Reagent (Promega). The fluorescence of the lysate was then measured for 10 s as relative light units using a luminometer, and DR5 promoter activity was evaluated by comparing the fluorescence of the sample with that of the control (cells treated with EtOH).

TRAIL-Resistance Overcoming Activity Assay. TRAIL-resistance abrogating activity was assessed by a comparison of cell viability in the presence and absence of TRAIL using TRAIL-resistant human gastric adenocarcinoma (AGS) cell lines. ${ }^{26,29}$ The AGS cells were seeded in a 96 -well culture plate (6×10^{3} cells per well) in $200 \mu \mathrm{~L}$ of RPMI medium containing 10% FBS. The cells were then incubated at $37^{\circ} \mathrm{C}$ in a $5 \% \mathrm{CO}_{2}$ incubator for 24 h . Then, test samples with or without TRAIL $(100 \mathrm{ng} / \mathrm{mL})$ at different doses were added to each well. After 24 h incubation, the cells were washed with PBS, and $200 \mu \mathrm{~L}$ of PBScontaining fluorescein diacetate ($10 \mu \mathrm{~g} / \mathrm{mL}$) was added to each well. The plates were then incubated at $37^{\circ} \mathrm{C}$ for 1 h , and fluorescence was measured in a 96 -well scanning spectrofluorometer at 538 nm with excitation at 485 nm .

■ ASSOCIATED CONTENT

S Supporting Information. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compounds $\mathbf{1 - 9}$ are available free of charge via the Internet at http:// pubs.acs.org.

■ AUTHOR INFORMATION

Corresponding Author

*Tel \& Fax: +81-43-290-2913. E-mail: mish@faculty.chiba-u.jp.
(JSPS) and by Special Funds for Education and Research (Development of SPECT Probes for Pharmaceutical Innovation) from the Ministry of Education, Culture, Sports, Science, and Technology, Japan.

■ REFERENCES

(1) Ishibashi, M.; Arai, M. A. J. Synth. Org. Chem. Jpn. 2009, 67, 1094-1104.
(2) Ishibashi, M.; Ohtsuki, T. Med. Res. Rev. 2008, 28, 688-714.
(3) LeBlanc, H. N.; Ashkenazi, A. Cell Death Differ. 2003, 10, 66-75.
(4) Zhang, L.; Fang, B. Cancer Gene Ther. 2005, 12, 228-237.
(5) Lee, T.; Lee, J.; Park, J.; Kwon, T. Biochem. Biophys. Res. Commun. 2006, 351, 1024-1030.
(6) Ahmed, F.; Toume, K.; Sadhu, S. K.; Ohtsuki, T.; Arai, M. A.; Ishibashi, M. Org. Biomol. Chem. 2010, 8, 3696-3703.
(7) Kikuchi, H.; Ohtsuki, T.; Koyano, T.; Kowithayakorn, T.; Sakai, T.; Ishibashi, M. J. Nat. Prod. 2010, 73, 452-455.
(8) Xu, L.; Huang, F.; Chen, S.; Chen, S.; Xiao, P. Chem. Pharm. Bull. 2006, 54, 542-545.
(9) Hers, W.; Watanabe, K.; Kulanthaivel, P.; Blount, J. F. Phytochemistry 1985, 24, 2645-2654.
(10) McChesney, J. D.; Dou, J.; Sindelar, R. D.; Goins, D. K.; Walker, L. A.; Rogers, R. D. J. Chem. Cryst. 1997, 27, 283-290.
(11) Joycharat, N.; Greger, H.; Hofer, O.; Saifah, E. Phytochemistry 2008, 69, 206-211.
(12) Yoshikawa, M.; Hatakeyama, S.; Tanaka, N.; Fukuda, Y.; Yamahara, J.; Murakami, N. Chem. Pharm. Bull. 1993, 41, 1948-1954.
(13) Takahashi, S; Satoh, H.; Hongo, Y.; Koshino, H. J. Org. Chem. 2007, 72, 4578-4581.
(14) Lago, J. H. G.; Brochini, C. B.; Roque, N. F. Phytochemistry 2002, 60, 333-338.
(15) Banskota, A. H.; Tezuka, Y.; Tran, K. Q.; Tanaka, K.; Saiki, I.; Kadota, S. Chem. Pharm. Bull. 2000, 48, 496-504.
(16) Shao, Y.; Zhou, B. N.; Lin, L. Z.; Cordell, G. A. Phytochemistry 1995, 38, 1487-1492.
(17) Aguirre, M. C.; Delporte, C.; Backhouse, N.; Erazo, S.; Letelier, M. E.; Cassels, B. C.; Silva, X.; Alegría, S.; Negrete, R. Bioorg. Med. Chem. 2006, 14, 5673-5677.
(18) Rabesa, Z. A.; Voirin, B. Phytochemistry 1979, 18, 360-362.
(19) Dachriyanus; Fahmi, R.; Sargent, M. V.; Skelton, B. W.; White,
A. H. Acta Crystallogr. E: Struct. Rep. Online 2004, E60, o86-o 88
(20) Datta, B. K.; Datta, S. K.; Rashid, M. A.; Nash, R. J.; Sarker, S. D. Phytochemistry 2000, 54, 201-205.
(21) Sy, L. K.; Brown, G. D. Phytochemistry 1998, 48, 1207-1211.
(22) Barberá, O.; Marco, J. A.; Sanz, J. F.; Sánchez-Parareda, J. Phytochemistry 1986, 25, 2357-2360.
(23) Ayanoglu, E.; Ulubelen, A.; Clark, W. D; Brown, G. K.; Kerr, R. R.; Marby, T. J. Phytochemistry 1981, 20, 1715-1717.
(24) Horinaka, M.; Yoshida, T.; Shiraishi, T.; Nakata, S.; Wakada, M.; Nakanishi, R.; Nishino, H.; Matsui, H.; Sakai, T. Oncogene 2005, 24, 7180-7189.
(25) Horinaka, M.; Yoshida, T.; Shiraishi, T.; Nakata, S.; Wakada, M.; Nakanishi, R.; Nishino, H.; Sakai, T. Biochem. Biophys. Res. Commun. 2005, 333, 833-838.
(26) Larsson, R.; Kristensen, J.; Sandberg, C.; Nygren, P. Int. J. Cancer 1992, 50, 177-185.
(27) Kikuchi, H.; Ohtsuki, T.; Koyano, T.; Kowithayakorn, T.; Sakai, T.; Ishibashi, M. J. Nat. Prod. 2007, 70, 1910-1914.
(28) Yoshida, T.; Maeda, A.; Tani, N.; Sakai, T. FEBS Lett. 2001, 507, 381-385.
(29) Ahmed, F.; Ohtsuki, T.; Aida, W.; Ishibashi, M. J. Nat. Prod. 2008, 71, 1963-1966.

■ ACKNOWLEDGMENT

This study was supported by a Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science

[^0]: Received: October 28, 2010
 Published: January 25, 2011

